$f\left( x \right) = \sqrt {\frac{{x - 2}}{{x + 3}}} $
$y = \sqrt {\frac{{x - 2}}{{x + 3}}}$ donde $u = \frac{{x - 2}}{{x + 3}}$; entonces $y = \sqrt u = {u^{\frac{1}{2}}}$
\begin{array}{l}
\frac{{dy}}{{dx}} = \frac{{dy}}{{du}} \cdot \frac{{du}}{{dx}} = \frac{d}{{du}}y \cdot \frac{d}{{dx}}u\\
\frac{{dy}}{{dx}} = \frac{d}{{du}}\left[ {{u^{\frac{1}{2}}}} \right] \cdot \frac{d}{{dx}}\left[ {\frac{{x - 2}}{{x + 3}}} \right]\\
\frac{{dy}}{{dx}} = \frac{1}{2}{u^{\frac{1}{2} - 1}} \cdot \frac{{\left( {x + 3} \right)\frac{d}{{dx}}\left[ {x - 2} \right] - \left( {x - 2} \right)\frac{d}{{dx}}\left[ {x + 3} \right]}}{{{{\left( {x + 3} \right)}^2}}}\\
\frac{{dy}}{{dx}} = \frac{1}{2}{u^{ - \frac{1}{2}}} \cdot \frac{{\left( {x + 3} \right)\left( {x - 2} \right)\left( 1 \right)}}{{{{\left( {x + 3} \right)}^2}}}\\
\frac{{dy}}{{dx}} = \frac{1}{2}{u^{ - \frac{1}{2}}} \cdot \frac{{\left( {x + 3} \right)\left( {x - 2} \right)\left( 1 \right)}}{{{{\left( {x + 3} \right)}^2}}}\\
\frac{{dy}}{{dx}} = \frac{1}{2}{u^{ - \frac{1}{2}}} \cdot \frac{5}{{{{\left( {x + 3} \right)}^2}}} = \frac{1}{{2{u^{\frac{1}{2}}}}} \cdot \frac{5}{{{{\left( {x + 3} \right)}^2}}} = \frac{1}{{2\sqrt u }} \cdot \frac{5}{{{{\left( {x + 3} \right)}^2}}}\\
\frac{{dy}}{{dx}} = \frac{1}{{2\sqrt {\frac{{x - 2}}{{x + 3}}} }} \cdot \frac{5}{{{{\left( {x + 3} \right)}^2}}} = \frac{5}{{2 \cdot \frac{{\sqrt {x - 2} }}{{\sqrt {x + 3} }} \cdot {{\left( {x + 3} \right)}^2}}}\\
\frac{{dy}}{{dx}} = \frac{{5 \cdot \sqrt {x + 3} }}{{2 \cdot \sqrt {x - 2} \cdot {{\left( {x + 3} \right)}^2}}}
\end{array}