Introduccion

La teoría de la probabilidad es la parte de las matemáticas que estudia los fenómenos aleatorios estocásticos. Estos deben contraponerse a los fenómenos determinísticos, los cuales son resultados únicos y/o previsibles de experimentos realizados bajo las mismas condiciones determinadas. Los fenómenos aleatorios, por el contrario, son aquellos que se obtienen como resultado de experimentos realizados, otra vez, bajo las mismas condiciones determinadas pero como resultado posible poseen un conjunto de alternativas. La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro.

Muchos fenómenos naturales son aleatorios, pero existen algunos como el lanzamiento de un dado, donde el fenómeno no se repite en las mismas condiciones, debido a que la características del material hace que no exista una simetría del mismo, así las repeticiones no garantizan una probabilidad definida. En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por LebesgueBorel y Frechet entre otros.

Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).

 

Referencia: es.wikipedia.org/wiki/Probabilidad

 

Historia de la Probabilidad

 

En cuanto al concepto en sí, la probabilidad y el azar siempre ha estado en la mente del ser humano. Por ejemplo:

  • Sumerios y Asirios utilizaban un hueso extraído del talón de animales como ovejas, ciervos o caballos, denominado astrágalo o talus, que tallaban para que pudieran caer en cuatro posiciones distintas, por lo que son considerados como los precursores de los dados.
  • En el caso de la civilización egipcia, algunas pinturas encontradas en las tumbas de los faraones muestran tanto astrágalos como tableros para el registro de los resultados.
  • Por su parte, los juegos con dados se practicaron ininterrumpidamente desde los tiempos del Imperio Romano hasta el Renacimiento, aunque no se conoce apenas las reglas con las que jugaban. Uno de estos juegos, denominado "hazard", palabra que en inglés y francés significa riesgo o peligro, fue introducido en Europa con la Tercera Cruzada. Las raíces etimológicas del término provienen de la palabra árabe "al-azar", que significa "dado". Posteriormente, en el "Purgatorio" de Dante el término aparece ya como "azar".
  • En la actualidad, ruletas, máquinas tragaperras, loterías, quinielas,..., nos indican que dicha fascinación del hombre por el juego, continúa.

La historia de la probabilidad comienza en el siglo XVII cuando Pierre Fermat  y Blaise Pascal, tratan de resolver algunos problemas relacionados con los juegos de azar. Aunque algunos marcan sus inicios cuando Cardano (jugador donde los haya) escribió sobre 1520 El Libro de los Juegos de Azar (aunque no fue publicado hasta más de un siglo después, sobre 1660) no es hasta dicha fecha que comienza a elaborarse una teoría aceptable sobre los juegos.

Christian Huygens conoció la correspondencia entre Blaise Pascal y Pierre Fermat suscitada por el caballero De Méré, se planteó el debate de determinar la probabilidad de ganar una partida, y publicó (en 1657) el primer libro sobre probabilidad: De Ratiociniis in Ludo Aleae, (Calculating in Games of Chance), un tratado sobre juegos de azar.Se aceptaba como intuitivo el concepto de equiprobable, se admitía que la probabilidad de conseguir un acontecimiento fuese igual al cociente entre

Durante el siglo XVIII, debido muy particularmente a la popularidad de los juegos de azar, el cálculo de probabilidades tuvo un notable desarrollo sobre la base de la anterior definición de probabilidad. Destacan en 1713 el teorema de Bernoulli y la distribución binomial, y en 1738 el primer caso particular estudiado por De Moivre, del teorema central del límite. En 1809 Gauss » inició el estudio de la teoría de errores y en 1810 Laplace, que había considerado anteriormente el tema, completó el desarrollo de esta teoría. En 1812 Pierre Laplace » publicó Théorieanalytique des probabilités en el que expone un análisis matemático sobre los juegos de azar.

A mediados del siglo  XIX, un fraile agustino austríaco, Gregor Mendel, inició el estudio de la herencia, la genética, con sus interesantes experimentos sobre el cruce de plantas de diferentes características. Su obra, La matemática de la Herencia, fue una de las primeras aplicaciones importantes de la teoría de probabilidad a las ciencias naturales

Desde los orígenes la principal dificultad para poder considerar la probabilidad como una rama de la matemática fue la elaboración de una teoría suficientemente precisa como para que fuese aceptada como una forma de matemática. A principios del siglo XX el matemático ruso Andrei Kolmogorov  la definió de forma axiomática y estableció las bases para la moderna teoría de la probabilidad que en la actualidad es parte de una teoría más amplia como es la teoría de la medida.

 

Referencia: http://www.estadisticaparatodos.es/historia/histo_proba.html

 

Para qué sirven las Probabilidades

 

A diario nos topamos con decisiones a tomar cuyo resultado nos es incierto. Si resulta que decido ir  en combi a la universidad puede haber congestión vehicular con lo cual llego tarde; en cambio ahora puedo optar por el metropolitano dicho sea de paso aun hoy no llega su recorrido a la UNI. ¿Qué decisión debo tomar? ¿Qué nos conviene hacer? ¿Con que criterio resolvemos nuestras elecciones?

En ocasiones encontramos que ciertas personas eligen mejor que otras. Lo que sucede que en muchos casos estas personas aplican criterios probabilísticos aun sin saber que lo hacen.

La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.

Veamos algunos ejemplos.


Las probabilidades son muy útiles, ya que pueden servir para desarrollar estrategias. Por ejemplo, algunos automovilistas parecen mostrar una mayor tendencia a aumentar la velocidad si creen que existe un riesgo pequeño de ser multados; los inversionistas estarán más interesados en invertirse dinero si las posibilidades de ganar son buenas. El punto central en todos estos casos es la capacidad de cuantificar cuan probable es determinado evento.


En concreto decimos que las probabilidades se utilizan para expresar cuan probable es un determinado evento.


Situaciones Diversas.


1. Cumpleaños: ¿Cuántas personas deberían estar presentes en un salón para que la probabilidad de que al menos dos celebren su cumpleaños el mismo día sea mayor que ½?


2. Colocación de tres bolas en tres celdas. Se tienen 3 bolas etiquetadas A, B y C y tres celdas enumeradas 1, 2y 3. Las bolas se colocan al azar en las celdas. ¿Cuál es la probabilidad de que exactamente una celda quede vacía?


- Se colocan r bolas en n celdas.

- Accidentes: r accidentes en 7 días de la semana.
- Estudio del efecto genético de la radiación: Las partículas a son las bolas y los cromosomas representan las celdas.
- Fotografía: Una placa fotográfica está cubierta por granos sensibles a la luz. Interesa saber el número de cuantos de luz (bolas) que golpea un grano (celda).

El Dilema de los Prisioneros.

  Tres prisioneros, que llamaremos A, B y C, saben que dos de ellos serán liberados y el tercero permanecerá preso por un largo tiempo. Puesto que no se tiene ningún criterio para decidir quién es liberado y quien no, ninguno de ellos sabe quiénes serán los elegidos. El prisionero A le pide al guardia el nombre de uno de los prisioneros, distinto de ´ el mismo, a ser liberado. El guardia se niega con el siguiente argumento:"En este momento tu probabilidad de ser liberado es de 2/3. Sin embargo, si te digo el nombre de uno de los prisioneros que será liberado pasaras a ser uno de dos prisioneros a ser liberados con lo que tu chance de salir libre se reducirá a 1/2. Como no quiero perjudicarte no te diré nada."

 Ante esta extraña situación, cabe preguntarse si el razonamiento del guardia es correcto. ¿De qué manera la información suministrada por el guardia afecta el chance que el preso tiene de ser liberado? ¿Cómo podemos analizar este problema?

 Uno de los aspectos más básicos de este problema es que, al ser liberados dos prisioneros, se tienen tres resultados posibles: A y B son liberados, A y C son liberados o B y C son liberados. Denotaremos estos resultados como {A, B}, {A, C} y {B, C} respectivamente.

 Otro aspecto importante, es que si asumimos que los presos a ser liberados se escogen al azar, es decir, sin que prive ningún criterio de selección, la intuición sugiere que cada uno de los posibles resultados debe tener la misma posibilidad de ocurrir. Por lo tanto, si hemos de asignar un número a la posibilidad de ocurrencia de cada resultado y si asumimos que se le asigna el número 1 a un resultado que tiene un chance de ocurrencia de 100 %, este número debería ser el mismo para todos los resultados, en este caso 1/3 (o un chance de 33 %). Observe que la situación anterior es un caso particular de la siguiente situación más general:

Se considera una acción que puede ser repetida cuantas veces se quiera en las mismas condiciones y de la cual se obtiene en cada repetición uno y solo uno de r resultados posibles. Suponemos además que no tenemos control alguno sobre el resultado a producirse en cada realización de la acción.