

PROPUESTA DE EXAMEN FINAL. U-I SUELO

 1- () Sostén de las plantas y productor de alimentos son una de las principales funciones de: a) la biosfera b) el suelo c) el agricultor d) la energía solar
.2 () Los resultados obtenidos en una actividad experimental demuestran que el suelo está formado por una fase sólida, una líquida y una gaseosa. Con estos resultados los estudiantes pueden afirmar que el suelo es una mezcla:
a) sólidaa) líquidab) homogéneac) heterogénea
 3. () La parte sólida del suelo contiene dos tipos de materia, inorgánica y líquida a) orgánica b) mineral c) gaseosa
 4. () Son dos aniones presentes en el suelo: a) Fe, Ca b) CO₂, SO₂ c) NO₃, Cl⁻ d) K⁺, Mg²⁺
5. () Los compuestos inorgánicos se clasifican en, óxidos,,,
a) sales , hidróxidos y ácidos
b) metales, no metales y sales
c) ácidos, hidróxidos y anhídridos
d) carbonatos, bicarbonatos y silicatos

- Relaciona la columna del tipo de compuesto con la fórmula que le corresponda.
 - A. ácido
- 1. K₂O
- B. sal
- 2. H₂CO₃
- C. hidróxido
- 3. KNO₃
- D. óxido
- 4. KOH
- a) A1, B2, C3, D4
- b) A4, B3, C2, D1
- c) A2, B3, C4, D1
- d) A3, B4, C1, D2
- 7. () Las siguientes características: cristales frágiles, puntos de fusión altos, fundidos o disueltos en agua conducen la corriente eléctrica. Son propias de:
 - a) sales
 - a) metales
 - b) oxiácidos
 - c) óxidos no metálicos
- 8. () El anión (PO₄)³⁻ se une con el catión Ca²⁺ para formar el fosfato de calcio, cuya fórmula química es:
 - a) PO₄Ca₂
 - b) PO₄Ca
 - c) $Ca_3(PO_4)_2$
 - d) $Ca_2(PO_4)_3$
- 9. () Nombre del compuesto que corresponde a la siguiente fórmula NH₄ NO₃
 - a) nitrito de amonio
 - b) nitrato de amonio
 - c) nitrito de amonio IV
 - d) nitrato de amonio III
- 10. () Determinar la masa molecular del fertilizante KNO₃ (nitrato de potasio) a partir de sus masas atómicas.
 - a) 69 u
 - b) 101 u
 - c) 207 u
 - d) 303 u

Elemento	Masa atómica				
K	39 u				
N	14 u				
0	16 u				

11. () La reacción de obtención del fertilizante "cloruro de potasio" se representa KOH + HCl→KCl + H₂O. Si reacciona completamente 56 g de hidróxido de potasio y se producen 74 g de KCl con 18 g de agua determina ¿Cuántos gramos de HCl se requieren?

a)	18 g	
b)	36 g	
c)	72 g	
- 1	1/12 ~	

Masa molar
H = 1 g/mol
O = 16 g/mol
K = 39 g/mol
CI =35 g/mol

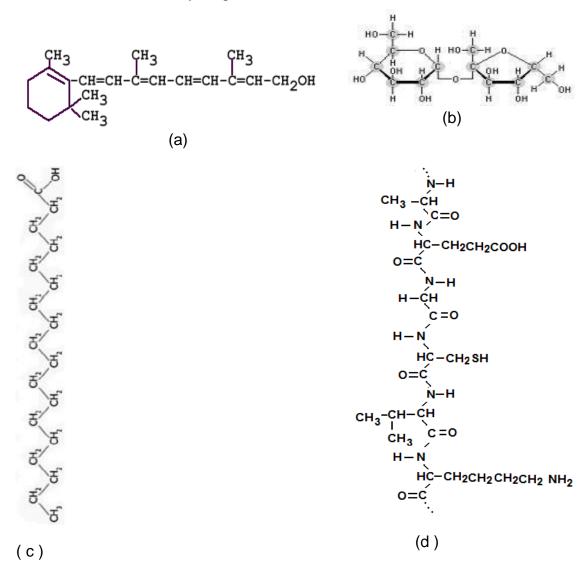
- 12. () Un mol de cualquier sustancia contiene _____ partículas (átomos, moléculas o iones)
 - a) 23×10^6
 - b) 6.023 x 10²⁴
 - c) 6.023×10^{23}
 - d) 1023^{6.023}
- 13. () Relación de columnas. Elige el inciso que relacione correctamente propiedades de los ácidos y de las bases.
 - 1. Adquieren color rojo con indicador universal
 - (A) ÁCIDOS 2. Adquieren color azul con indicador universal
 - (B) BASES 3. Resbalosas al tacto
 - 4. Al reaccionar con los metales desprenden hidrógeno
 - a) A: 1,2 y B: 3,4
 - b) A: 2,3 y B: 1,4
 - c) A: 3,4 y B: 1,2
 - d) A: 1,4 y B: 2,3*
- 14. () La ecuación: HCl_(ac) + NaOH_(ac)→NaCl_(ac) + H₂O, representa una reacción de:
 - a) análisis
 - b) neutralización
 - c) descomposición
 - d) oxidación y reducción

15. () Relación de colu comportamiento respectivamente, d	de un a	ácido y	una	•	esponda al (hidróxido)
		1) HCl _(g) + I	$H_2O_{(l)}\rightarrow H^{-1}$	+ _(ac) + C	; - (ac)	
	A. ÁCIDO	2) NaOH _(s)	+ H ₂ O _(I) →	∙ Na ⁺ _{(ac}) + OH ⁻ (ac)	ı
	B. BASE	3) NaCl _(s) +	$H_2O_{(l)}\rightarrow 1$	√a ⁺ (ac) +	- Cl ⁻ (ac)	
		4) H ₂ O _(I) →2	2H⁺ + OH	-		
b) A:	1, B: 2 3, B: 4 1, B: 4 2, B: 3					
	ι	J-II ALIMEN	TOS			
	entro del paréntesis de los compuestos ir		espondier	nte para	distingui	r las
(i) y de los co	mpuestos del carbo	no (c):				
a) tienen alto	s puntos de fusión			()	
b) son solubles en disolventes orgánicos		()			
c) sus temperaturas de fusión son bajas		()			
d) en solución	n acuosa conducen l	a corriente e	eléctrica	()	
hidrógeno, el C=2.5, H= 2. de las siguier (F) si es falsa () ()	no de carbono tiene oxígeno o el nitrógo 1, O=3.5, N= 3.0 C ntes afirmaciones es a. La unión C — H es co La unión C — O es i La unión C — N es i	eno. La elec Con base a scribe dentro ovalente. ónica.	tronegativ la diferen	/idad d cia de	e estos e electrone	lementos es gatividades,

) Las uniones C - H, C - O y C - N, todas son covalentes.

соон

- 18. () Los cuatro electrones en la capa más externa del átomo de carbono hace que tenga la posibilidad de unirse a otros átomos de carbono para formar enlaces:
 - a) solamente sencillos
 - b) solamente dobles
 - c) solamente dobles y triples
 - d) sencillos, dobles y triples
- 19. () Selecciona el inciso que relaciona la columna de los compuestos con el grupo funcional:


- 2. cetona
- 3. ácido carboxílico
- 4. amida
- a) 1A, 2C, 3D, 4B
- b) 1B, 2C, 3A, 4D
- c) 1C, 2A, 3B, 4D
- d) 1D, 2B, 3A, 4C
- e)
- 20. () ¿Cuál de los siguientes compuestos tendrá mayor punto de ebullición de acuerdo a la propiedad de formar puentes de hidrógeno?
 - a) CH₃-CH₃
 - b) CH₃-CH₂-OH
 - c) CH₃-O-CH₃
 - d) CH₃-CH₂-CH₃

21. () Es un segmento de molécula de una proteína típica, con enlaces dobles entre los átomos de carbono y oxígeno.

22. () La siguiente estructura representa dos aminoácidos unidos por el enlace:

- a) iónico
- b) peptídico
- c) glucosídico
- d) puente de hidrógeno



- 23. () Nuestro organismo requiere energía para realizar las funciones vitales mediante la oxidación de:
 - e) a) vitaminas y agua
 - f) b) minerales y vitaminas
 - g) c) carbohidratos y grasas
 - h) d) agua y minerales
- 24. () Se encuentra en los alimentos y al oxidarse desprende energía para las funciones vitales de nuestro cuerpo es:
 - a) grasa
 - b) sal
 - c) agua
 - d) vitamina
- 25. () La reacción de condensación entre la glucosa y la galactosa para producir la lactosa es:

a)

b)

C

- 26. () El salado, la deshidratación, la pasteurización y la esterilización son:
 - a) técnicas de conservación de alimentos
 - b) procesos de elaboración de polisacáridos
 - c) 2mecanismos de desnaturalización de proteínas
 - d) procesos de eliminación de grasas

U-III MEDICAMENTOS

- **27.** () La aspirina es un analgésico, cada tableta contiene 500 mg de ácido acetilsalicílico, que es el principio activo y 100 mg de excipiente. Estos componentes no se distinguen a simple vista y forman una fase sólida. Por lo anterior se puede afirmar que la tableta de aspirina es:
 - a) una mezcla heterogénea
 - b) un elemento homogéneo
 - c) una mezcla homogénea
 - d) un compuesto blanco
- 28. () La importancia de la formulación de un medicamento es :
 - a) identificar la acción curativa
 - b) conocer la cantidad del principio activo
 - c) conocer la cantidad del excipiente
 - d) establecer la dosis

29. () En la ecuación química de la síntesis de la aspirina los grupos funcionales que forman la parte reactiva del ácido salicílico y del anhídrido acético son:

- a) amina y cetona
- b) hidroxilo y carbonilo
- c) éster y amida
- d) hidroxilo y éster
- 30. () ¿Qué determina las propiedades de las moléculas orgánicas?
 - a) la temperatura
 - b) las masas moleculares
 - c) sus puntos de fusión
 - d) sus grupos funcionales