CLASIFICACIÓN DE CARBOHIDRATOS

Susana Ramírez Ruiz Esparza - José Alfredo Martínez Arronte

Escuela Nacional Colegio de Ciencias y Humanidades Plantel Naucalpan

Material elaborado para el Portal Académico del CCH

CLASIFICACIÓN

Existe un gran número de compuestos conocidos como carbohidratos, por lo que para facilitar su estudio se agrupan usando características que tienen en común entre ellos, es lo que a continuación estudiarás.

Posición del grupo carbonilo:

Aldosas y cetosas.

Observa en las siguientes fórmulas la posición en que se encuentra el grupo carbonilo que está resaltado con color rojo, recuerda que su posición en la cadena nos indica que se trata de una cetona cuando está en una posición intermedia, o bien un aldehído si se localiza en un extremo.

<table>
<thead>
<tr>
<th>H₂C-OH</th>
<th>H-C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>C=O</td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>HO-C-H</td>
<td>OH-C-H</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>H-C-OH</td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>H-C- OH</td>
<td>H-C- OH</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>H₂C-OH</td>
<td>H₂C-OH</td>
</tr>
</tbody>
</table>

Los carbohidratos que tienen grupo funcional aldehído se llaman ALDOSAS y los que tienen grupo funcional cetona se llaman CETOSAS.
Clasificación de Carbohidratos
Susana Ramírez Ruiz Esparza – José Alfredo Martínez Arronte

2 NÚMERO DE ÁTOMOS DE CARBONO:

Triosas, tetrasas, pentosas y hexosas.

Esta clasificación de carbohidratos se utiliza de acuerdo al número de átomos de carbono que contiene el carbohidrato, para lo cual se usan los prefijos tri, tetra, penta y hexa, que son los más comunes. Algunos ejemplos son:

TRIOSAS (cadenas de 3 carbonos)

```
H – C = O
H – C – OH
H2 – C – OH
ALDOTRIOSA
(Gliceraldehido)
```

```
H2 – C – OH
C = O
H2 – C – OH
CETOTRIOSA
(Dihidroxiacetona)
```

TETROSAS (cadenas de 4 carbonos)

```
H – C = O
H – C – OH
HO – C – H
H2 – C – OH
ALDOTETROSA
```

```
H – C – OH
C = O
H – C – OH
H2 – C – OH
CETOTETROSA
```

PENTOSAS (cadenas de 5 carbonos)

```
H – C = O
H – C – OH
OH – C – H
H – C – OH
H2 – C – OH
ALDOPENTOSA
```

```
H2 – C – OH
C = O
H – C – OH
OH – C – H
H2 – C – OH
CETOPENTOSA
```
Clasificación de Carbohidratos/Susana Ramírez-Alfredo Martínez

HEXOSAS (cadenas de 6 carbonos)

\[
\begin{align*}
H - C &= O \\
H - C &= OH \\
OH - C &= H \\
H - C &= OH \\
OH - C &= H \\
H_2C &= OH \\
\end{align*}
\]

ALDOHEXOSA

\[
\begin{align*}
H_2C &= OH \\
C &= O \\
H - C &= OH \\
OH - C &= H \\
H - C &= OH \\
H_2C &= OH \\
\end{align*}
\]

CETOHEXOSA

3: Cantidad de unidades de sacáridos:

Monosacáridos, Disacáridos, Trisacáridos y Polisacáridos.

Las moléculas más sencillas de carbohidratos que no están enlazadas a ninguna otra molécula, se llaman **monosacáridos**, por ejemplo, galactosa, glucosa y fructuosa. Cuando se unen dos ó más se forman nuevos compuestos que se clasifican de acuerdo con el número de monosacáridos:
- Dos monosacáridos enlazados forman **disacáridos**.
- Tres monosacáridos enlazados forman **trisacáridos**.

En algunos textos podrás encontrar el término OLIGOSACÁRIDO que se refiere a los compuestos que resultan cuando el número de monosacáridos que los forman van de dos a diez y los **polisacáridos** son aquellos que tienen muchos monosacáridos enlazados.

MONOSACÁRIDOS

Los monosacáridos pueden existir en formas lineales y formas anulares; la forma anular es más favorecida en disoluciones acuosas.

Los monosacáridos de cinco y seis átomos de carbono llamados pentosas y hexosas, suelen formar estructuras **cíclicas**. La formación de estos anillos es espontánea y las formas abiertas y cerradas están en equilibrio. Al ciclarse el monosacárido, los átomos se reacomodan de tal forma que donde había un grupo aldehído o cetona, aparece un grupo hidroxilo, el cual puede ubicarse por debajo o por encima del plano de la molécula, originando formas α o β, respectivamente.
Como ejemplo veamos a la GLUCOSA en tres diferentes representaciones de sus fórmulas:

- **Cadena abierta o lineal** (Proyección de Fisher)
- **Cadena cerrada en vertical**
- **Cadena cíclica o anular** (Fórmula de Haworth)

Cadena abierta usando modelos
GLUCOSA

Cadena cíclica usando modelos
DISACÁRIDOS

Dos monosacáridos pueden unirse cuando se lleva a cabo una reacción de condensación, en la que ambas moléculas se ligan por medio de un enlace llamado glucosídico, formando un nuevo compuesto llamado disacárido.

A continuación se presenta como ejemplo de disacárido el formado por la glucosa y la fructosa, es decir, la sacarosa.

\[
\text{Glucosa} \quad + \quad \text{Fructuosa} \quad \rightarrow \quad \text{Sacarosa}
\]
TRISACÁRIDOS

La rafinosa o melitosa es un trisacárido que se encuentra en muchas plantas leguminosas como los frijoles, chicharos, col, y brócoli, está formada por una molécula de galactosa unida a una de sacarosa por un enlace glucosídico 1α-6. Este sacárido es indigerible por los seres humanos y se fermenta en el intestino grueso por bacterias que producen gas. Sugerencia cuando comas leguminosas hazlo con moderación.

4. POLISACÁRIDOS+

Están constituidos por un gran número de monosacáridos unidos mediante enlaces glucosídicos, constituyendo largas cadenas. Los polisacáridos pueden ser homo/polímeros, cuando la unidad repetitiva es un solo tipo de monosacárido o heteropolímeros, cuando las unidades repetitivas están constituidas al menos por dos monómeros diferentes, (un ejemplo es el ácido hialurónico, formado por los monómeros N-acetil glucosamina y el ácido glucurónico). El ácido hialurónico se encuentra en el tejido conectivo donde actúa como pegamento para mantener unidas las células, es de importancia para el ensamble en el tejido conjuntivo y óseo.
Los polisacáridos más importantes presentes en la naturaleza son el **almidón**, el **glucógeno** y la **celulosa**, todos ellos homopolímeros formados por glucosa.

CELULOSA

La celulosa que se encuentra en los tallos de las hojas y troncos de los árboles está formada por monosacáridos de glucosa unidas entre sí por medio del enlace glucósídico (1α - 4), su fórmula molecular es (C₆H₁₀O₅)ₙ. Observa en la figura como el tallo de una planta está constituido por cadenas lineales de celulosa.

![Representación de la celulosa](image)

ALMIDÓN

El almidón es un **polisacárido** que comprende monómeros de **glucosa**, como la celulosa, pero a diferencia de ésta, es una mezcla de dos polisacáridos, la **amilosa** y la **amilopectina**, en las que las uniones se presentan en átomos de carbono diferentes (ver esquema). La función del almidón es la de ser la principal reserva de energía en las plantas.
Amilosa

Las moléculas de amilosa consisten típicamente de 200 a 20 000 unidades de glucosa que se despliegan en forma de hélice como consecuencia de los ángulos en los enlace entre la moléculas de glucosa.
Amilopectina

La amilopectina se distingue de la amilosa por ser muy ramificada; cadenas laterales cortas que contienen aproximadamente 30 unidades de glucosa que se unen con enlaces 1α-6, cada veinte o treinta unidades de glucosa a lo largo de las cadena principales; las moléculas de amilopectinas pueden contener hasta dos millones de unidades de glucosa.

![Diagrama de amilopectina](image)

GLUCÓGENO

Otro polisacárido es el glucógeno que constituye una importante reserva de energía para los animales y se almacena principalmente en el hígado y en los músculos. Se convierte fácilmente en glucosa para proveer de energía a los organismos.

La glucosa se almacena como glucógeno en los tejidos del cuerpo por el proceso de **glucogénesis**. Cuando la glucosa no se puede almacenar como glucógeno o convertirse inmediatamente a energía, es convertida a grasa. El glucógeno es un polímero de α-D-Glucosa idéntico a la amilopectina, pero las ramificaciones son más cortas (aproximadamente 13 unidades de glucosa) y más frecuentes.

Como pudiste darte cuenta, resulta muy importante la estructura que se tiene de cada compuesto ya que dependiendo de los carbonos que participan en la formación de los enlaces, se tienen diferentes estructuras, por tanto diferentes propiedades.
Clasificación de Carbohidratos
Susana Ramírez Ruiz Esparza – José Alfredo Martínez Arronte