Comentario
Share/Save

Variación Proporcional: Página3 of 6

Constante de proporcionalidad y modelo matemático

Para determinar si en nuestro ejercicio se da o no una variación proporcional, debemos identificar además de la variable dependiente e independiente, la constante de proporcionalidad y con ella expresar modelo matemático que la representa.

Determinemos si en el siguiente ejemplo existe una variación directamente proporcional, o no.

Pasa el cursor sobre los conceptos para obtener información

 

Con base en lo anterior podemos concluir lo siguiente:

Finalmente, cabe señalar que la ventaja de conocer el modelo algebraico es que sirve para encontrar el valor de la variable dependiente cuando solo se sabe el valor de la variable independiente.

Revisemos un segundo ejemplo, donde no existe una variación proporcional.

Analiza la siguiente tabla de valores y antes de revisar el procedimiento para resolverla, trata de identificar la constante de proporcionalidad y el modelo algebraico que lo representa.

 

 

¿Existe una variación proporcional? Si/ No ¿Por qué?

Seguramente notaste lo siguiente:

 

 

Actividad 1

Ejercicio 1

Instrucciones: Escribe en cada uno de los espacios en blanco las respuestas correctas y al finalizar compara tus resultados para revisar si son correctos.

Si un metro de cierta tela cuesta $3.50, ¿cuánto se pagará por 2, 3, 4, 4.5, 5, 5.5 y 6 metros?

 

Ejercicio 2

Instrucciones: Resuelve el siguiente ejercicio, complementando la tabla y contestando a cada una de las preguntas que se te indican. Al finalizar comprueba tus resultados.

Analiza si entre las variables que se presentan en la tabla, existe una variación directamente proporcional, identificando la constante de proporcionalidad y el modelo algebraico.

 

Alumno: